

INDIAN SCHOOL AL WADI AL KABIR

Assessment - 1

Class: XI Date: 21.09.2023 Sub: MATHEMATICS (041)

Max Marks: 80 Time: 3 hr

General Instructions:

- 1. This question paper is divided in to 6 sections- A, B, C, D and E
- 2. Section A comprises of 20 MCQ type questions of 1 mark each.
- 3. Section B comprises of 5 Very Short Answer Type Questions of 2 marks each.
- 4. Section C comprises of 6 Short Answer Type Questions of 3 marks each.
- 5. Section D comprises of 4 Long Answer Type Questions of 5 marks each.
- Section E comprises of 3 source based / case based / passage-based questions (4 marks each) with sub parts.
- 7. Internal choice has been provided for certain questions

SECTION – A

(Each MCQ Carries 1 Mark)

1 Given
$$U = [-5, 5]$$
 and A is (-3, 5], then A^C is

a) [-5, -3) b) (4, 5] c) [-5, -3] d) [4, 5]

2 For disjoint sets A and B, n(A) = 3 and n(B) = 5 then $n(A \cap B)$ is a) 0 b) 3 c) 5 d) 8

A and B are two sets such that n(A - B) = 20 + x, n(B - A) = 3x and $n(A \cap B) = x + 1$. If n(A) = n(B) then the value of x is

- a) 3 b) 5 c) 8 d) 10
- 4 If $f(x) = \frac{2x}{1-x^2}$ then $f(\tan \theta)$ is a) $\cos 2\theta$ b) $\sin 2\theta$ c) $\tan 2\theta$ d) $\cot 2\theta$
- 5 The Value of [4.97] is a) 4.97 b) -4.97 c) 5 d) 4
- 6 Angle formed by the minute hand of a clock in 20 minutes is

a)
$$\frac{\pi}{6}$$
 b) $\frac{\pi}{3}$ c) $\frac{3\pi}{4}$ d) $\frac{2\pi}{3}$

7
$$\tan\left(-\frac{11\pi}{6}\right)$$
 is equal to
a) $-\sqrt{3}$ b) $\sqrt{3}$ c) $\frac{1}{\sqrt{3}}$ d) $-\frac{1}{\sqrt{3}}$

8 The radian representation of $20^0 30^1$ is

a)
$$20.5\pi^{c}$$
 b) $\frac{41}{360}\pi^{c}$ c) $\frac{81}{360}\pi^{c}$ d) $\frac{121}{360}\pi^{c}$

9 The value of $\sin 15^{\circ}$

a)
$$\frac{\sqrt{3}-1}{2\sqrt{2}}$$
 b) $\frac{1-\sqrt{3}}{2\sqrt{2}}$ c) $\frac{2\sqrt{2}}{1-\sqrt{3}}$ d) $\frac{2\sqrt{2}}{\sqrt{3}-1}$

- 10The simplified form of i^{257} is
a) ic) 1d) -1
- 11 If $z_1 = 2 + 3i$ and $z_2 = -5i + 9$, then $\operatorname{Re}(z_1 + z_2)$ is a) -3 b) 7 c) 11 d) 12
- 12 The absolute value of the complex number z = 3 + 6ia) 3 b) 6 c) 9
- ¹³ The value of $\frac{i^{4n+3}-i^{4n-3}}{2}$ is a) *i* b) - *i* c) 1 d) -1
- 14 If x < 5, then which of the following is correct
 - a) -x < -5 b) $-x \le -5$ c) -x > -5 d) $-x \ge -5$

d) 3√5

In an experiment, a solution of hydrochloric acid is to be kept between 30° Celsius and 35° Celsius. What is the range of temperature in degree Fahrenheit if conversion is Celsius, C = ⁵/₉ x (F - 32)
a) 30F and 35F
b) 54F and 63F
c) 86F and 95F
d) None of these

- a) 4^4 b) 4^5 c) 5^4 d) 5^5
- ¹⁷ If $\frac{1}{8!} + \frac{1}{9!} = \frac{x}{10!}$, then the value of x is a) 64 b) 81 c) 100 d) None of these

18 There are 4 bus routes between A and B and 3 bus routes between B and C. A man can travel round the trip in number of ways by bus from A to C via B. If he does not to use a bus route more than once in how many ways can he make round trip.

Directions: In the following 2 questions, A statement of Assertion (A) is followed by a statement of Reason (R). Mark the correct choice as.

- (A) Both A and R are true and R is the correct explanation of A
- (B) Both A and R are true but R is NOT the correct explanation of A
- (C) A is true but R is false
- (D) A is false and R is True
- 19 Assertion (A): ${}^{10}C_3 = 120$ Reason (R): ${}^{n}C_r = \frac{n!}{(n-r)!}$ a) b) c) d)
- 20 Assertion (A): The variance of 5, 5, 5, 5 is zero Reason (R): Variance $(\sigma^2) = \frac{1}{n} \sum_{i=1}^{n} (xi - \bar{x})^2$ a) b) c) d)

SECTION – B

(Each Question Carries 2 Marks)

21 If
$$\tan \theta = \frac{1}{2}$$
 and $\tan \phi = \frac{1}{3}$, then find the value of $\theta + \phi$
- OR -

Prove that $\cot x \cdot \cot 2x - \cot 2x \cdot \cot 3x - \cot 3x \cdot \cot x = 1$

- Express $\frac{3-i}{5+6i}$ in the form of (a+ib)
- 23 Solve the following system of linear inequalities: 5x - 7 < 3(x + 3) & $1 - \frac{3x}{2} \le x - 4$
- How many numbers lying between 100 and 1000 can be formed with the digits 0, 1, 2, 3, 4, 5, if the repetition of the digits is not allowed?
 - OR -

In how many ways can one select a cricket team of eleven from 17 players in which only 5 players can bowl if each cricket team of 11 must include exactly 4 bowlers?

Find the mean deviation about the median for the data: 2, 3, 5, 6, 8, 10, 12, 17, 20, 26

SECTION – C

(Each Question Carries 3 Marks)

- 26 If U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, A = {1, 2, 3, 5}, B = {2, 4, 6, 7} and C = {2, 3, 4, 8} then find (i) (B U C)^I and (ii) (C A)^I
- Find the domain and range of the function $\sqrt{x^2 4}$
- 28 Prove that $\cot 4x (\sin 5x + \sin 3x) = \cot x (\sin 5x \sin 3x)$
 - OR -

Evaluate $\cos\left(\frac{3\pi}{2} + x\right)\cos\left(2\pi + x\right)\left[\cot\left(\frac{3\pi}{2} - x\right) + \cot\left(2\pi + x\right)\right]$

- 29 Evaluate $(1 + i)^6 + (1 i)^3$
 - OR -

If
$$\left(\frac{1+i}{1-i}\right)^3 - \left(\frac{1-i}{1+i}\right)^3 = x + iy$$
, then find $x + y$

- 30 Find the number of arrangements of the letters of the word INDEPENDENCE. In how many of these arrangements,
 - (i) do the words start with P
 - (ii) do all the vowels always occur together
 - (iii) do the vowels never occur together
 - OR -

Find the Value of '*n*' such that ${}^{n}P_{5} = 42.{}^{n}P_{3}$

31 Find the mean deviation about the mean for the following data:

Marks	0 – 10	10 - 20	20-30	30 - 40	40 - 50	50 - 60	60 - 70
Number of Students	4	6	10	20	10	6	4

SECTION – D

(Each Question Carries 5 Marks)

32 Let $U = \{x \in N : x \le 8\}$, $A = \{x \in N : 5 < x^2 < 50\}$, $B = \{x \in N : x \text{ is a prime number less than 10}\}.$

- (i) Draw a Venn Diagram to show the relationship between the given sets
- (ii) list the elements of A^{I}
- (iii) list the elements of B^I
- (iv) list the elements of A B
- (v) list the elements of $A \cap B^I$

- 33 Prove that: $\cos 2x \cdot \cos \frac{x}{2} \cos 3x \cdot \cos \frac{9x}{2} = \sin 5x \cdot \sin \frac{5x}{2}$
 - OR

Prove that: $2\cos\frac{\pi}{13} \cdot \cos\frac{9\pi}{13} + \cos\frac{3\pi}{13} + \cos\frac{5\pi}{13} = 0$

- A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has
 - (i) no girl?
 - (ii) at least one boy and one girl?
 - (iii) at least 3 girls?
 - OR -

What is the number of ways of choosing 4 cards from a pack of 52 playing cards? In how many of these

- (i) four cards are of the same suit
- (ii) four cards belong to four different suits
- (iii) are face cards
- (iv) two are red cards and two are black cards
- (v) cards are of the same colour?
- 35 The diameters of circles (in mm) drawn in a design are given below. Calculate Mean, Variance and Standard Deviation for the data

Diameter	33 - 36	37 - 40	41 - 44	45 - 48	49 - 52
Number of Circles	15	17	21	22	25

SECTION – E

(CASE STUDY - Each Question Carries 4 Marks)

36 Vision of Infinity quiz was going on in ISWK. The 3rd round is activity round and each team will get 3 questions to answer, were 3rd question is with an optional question also. The team which completes the task first will get 30 points. The questions planned for the 3rd round as follows. Help your team to get the correct answers in the least amount of time.

(2m)

- (i) A and B are two sets such that n(A B) = 20 + x, n(B A) = 3x and $n(A \cap B) = x + 1$. If n(A) = n(B) then find 'x'. (1m)
- (ii) Check whether the following statement is True or False with reason: A and B are two sets such that $n(A \cap \overline{B}) = 8$, n(A) = 12 and $n(A \cap B) = 5$. (1m)
- (iii) If A and B are two sets such that n(A) = 36 and n(B) = 55 and $n(A \cap B) = 30$, then find n(A - B) (2m)

- OR -

If A and B are two sets such that n(A) = 36 and n(B) = 55 and $n(A \cap B) = 30$, then find n(only B)

37 During examination, students make their time table and fix the study hours for a particular subject or fix the range of number of hours. They connect the number of hours with the outcome in the mathematical terms. Outcome is a function of qualitative use of number of hours. Let's consider a function

 $f = \left\{ \left(x, \frac{1}{1 - x^2}\right) : x \in \mathbb{R}, x \neq \pm 1 \right\} \text{ from } \mathbb{R} \text{ into } \mathbb{R}.$ Then answer the following

(i)	Find the real number from co-domain which is associated with $x = 0.1$	(1m)
(ii)	Find the Pre-image of $\frac{-1}{2}$.	(1m)
(iii)	Find the domain of the function f	(2m)
	- OR -	
	Find the range of the function f	(2m)

38 The marks of four students out of 100 in 4 tests are given below and grading scheme is also given. Read the given information carefully and answer the following.

Name	Test 1	Test 2	Test 3	Test 4
Pranchi	85	93	94	89
Reshma	75	86	76	75
Ankit	92	83	44	60
Sunil	59	81	62	73

Grading System							
Average Marks (x)	Grade						
$x \ge 91$	A ₁						
$90 \ge x \ge 81$	A ₂						
$80 \ge x \ge 71$	B1						
$70 \ge x \ge 61$	B ₂						
$60 \ge x \ge 51$	С						

- (i) To get a grade A₁, what will be the minimum marks Prachi should score in Test 5 (1m)
- (ii) If Ankit scored 91 marks in his Test 5, then what will be his overall grade. (1m)
- (iii) To get average marks more than Ankit, what will be the minimum marks Sunil have to score in Test 5 (2m)
 - OR -

Reshma was not able to take Test 5 as she was ill. What will be Reshma's grade if the teacher gives her average of 4 test in the Test 5. (2m)

.....

INDIAN SCHOOL AL WADI AL KABIR Assessment - 1

Class: XI Date: 21.09.2023

Sub: MATHEMATICS (041)

Max Marks: 80 Time: 3 hr

	ANSWERS									
1	c) [-5, -3]	5	d) 4	9	a) $\frac{\sqrt{3}-1}{2\sqrt{2}}$	13	b) - <i>i</i>			
2	a) 0	6	d) $\frac{2\pi}{3}$	10	a) <i>i</i>	14	c) - <i>x</i> > - 5			
3	d) 10	7	d) - $\frac{1}{\sqrt{3}}$	11	c) 11	15	c) 86F & 95F			
4	c) $\tan 2\theta$ 8 b) $\frac{41}{360}\pi^c$ 12 d) $3\sqrt{5}$ 16 b) 4^5									
17	c) 100			1		•				
18	a) 72									
19	(C) A is true b	ut R	is false							
20	(A) Both A and	l R aı	re true and R is the c	orrect	explanation of A	4				
21	If $\tan \theta = \frac{1}{2}$ and	d tan		e value	e of $\theta + \phi$					
	(d), we know ta	n(A +	$-B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$							
	So tan(θ + φ	$\theta = \frac{\tan \theta + \tan \phi}{1 - \tan \theta \cdot \tan \phi}$							
	$\Rightarrow \tan(\theta + \phi) = \frac{\frac{1}{2} + \frac{1}{3}}{1 - \frac{1}{2} \cdot \frac{1}{3}}$									
	1.0		$=\frac{5/6}{5/6}=1=\tan\frac{\pi}{4}$							
	$\Rightarrow \qquad \theta + \phi = \frac{\pi}{4}$									
	OR									
	Prove that cot <i>x</i>	. cot	$2x - \cot 2x \cdot \cot 3x - \cot 3x$	$\cot 3x$	$1 \cdot \cot x = 1$					
	$L.H.S.=\cot x c$	ot 2x	$-\cot 2x \cot 3x - \cot 3x$	ot3x	cot x					
	$= \cot x \cot 2x$	- co	$t 3x (\cot 2x + \cot x)$							
	$= \cot x \cot 2x$	— co	$t(2x+x)(\cot 2x+a)$:otx)						
	$= \cot x \cot 2x$	- [<u>co</u>	$\left[\cot 2x \cot x - 1 \\ \cot 2x + \cot x \right] \left[\cot 2x + \cot x \right]$	+ cot x	()					

$$= \cot x \cot 2x - \cot 2x \cot x + 1$$

= 1

22	Express $\frac{3-i}{5+6i}$ in the form of $(a+ib)$	
	$\frac{(3-i)(5-6i)}{25+36} = \frac{15-18i-5i+6i^2}{61} = \frac{9-23i}{61} = \frac{9}{61} - \frac{23}{61}i$	
23	²³ Solve the following system of linear inequalities:	
	$5x - 7 < 3(x + 3)$ $1 - \frac{3x}{3} < x - 4$	
	$\frac{2}{2}$	
	Solu: [2, 8)	
24	How many numbers lying between 100 and 1000 car	n be formed with the digits 0, 1, 2, 3, 4, 5,
	if the repetition of the digits is not allowed?	
	The required number = ${}^{6}P_{3} - {}^{5}P_{2} = \frac{1}{(6-3)!} - \frac{1}{(5-2)!}$	
	$= \frac{31}{3!} - \frac{31}{3!} = (4 \times 5 \times 6) - (4 \times 5) = 100$	
	OR In how many ways can one select a cricket team of	eleven from 17 players in which only 5
	players can bowl if each cricket team of 11 must include	ude exactly 4 bowlers?
	required number of ways of selecting cricket te	$am = {}^{5}C_{1} \times {}^{12}C_{2}$
	required number of ways of selecting cheker te	$c_4 \times c_7$
	$=\frac{5!}{4!(5-4)!} \times \frac{12!}{7!(42-7)!} = \frac{5 \times 4!}{4!4!}$	$\times \frac{12 \times 11 \times 10 \times 9 \times 8 \times 7!}{7! 5!}$
	4!(5-4)! /!(12-7)! 4!1!	/151
	= 3960	
25	²⁵ Find the mean deviation about the median for the dat	ta: 2, 3, 5, 6, 8, 10, 12, 17, 20, 26
	Median = 9	
	$\frac{1}{n}\sum xi - \bar{x} = \frac{1}{10} \times 61 = 6.1$	
26	$(1 2 2 4 5 6 7 8 0 10) \land (1 2 2 5)$	\mathbf{P}_{1} (2.4.(7) and \mathbf{C}_{2} (2.2.4.8) then
20	$ \begin{array}{c} 11 \ U = \{1, 2, 3, 4, 5, 0, 7, 8, 9, 10\}, A = \{1, 2, 3, 5\}, \\ find (i) (B \cup C)^{I} and (ii) (C - A)^{I} \end{array} $	$\mathbf{D} = \{2, 4, 0, 7\}$ and $\mathbf{C} = \{2, 5, 4, 6\}$ then
	(i) $B \cup C = \{2,3,4,6,7,8\}$ (ii) C	$A = \{4, 8\}$
	$(B \cup C)^{I} = \{1, 5, 9, 10\} $ (C)	$(2 - A)^{I} = \{1, 2, 3, 5, 6, 7, 9, 10\}$
27	Find the domain and range of the function $\sqrt{x^2 - 4}$	
	$D_f = (-\infty, -2] \cup [2, \infty) \qquad R_f = [0, \infty)$	
28	28 Prove that $\cot 4r (\sin 5r + \sin 3r)$ - 0	R -
	$= \cot x (\sin 5x - \sin 3x)$ Evaluate	
	Given, L.H.S. = $\cot 4x (\sin 5x + \sin 3x)$ $\cos \left(\frac{3\pi}{2} + \sin 3x\right)$	$(2\pi + x) \left[\cot \left(\frac{3\pi}{2} - x \right) + \cot \left(2\pi + x \right) \right]$
1		$(2n + n) \left[\cot \left(\frac{2}{2} + n \right) \right]$
	$\sin A + \sin B = 2\sin \left(\frac{A+B}{B}\right)\cos \left(\frac{A-B}{B}\right)$	$x = \left[\cos\left(2\pi + x\right) \left[\cos\left(2\pi + x\right) \right] \right]$
	$\sin A + \sin B = 2\sin\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)$ L.H.S.=	$x = \left[\cos\left(2\pi + x\right) \right] = \left[\cos\left(2\pi + x\right) \right]$

	OR										
	Find the Value of ' <i>n</i> ' such that ${}^{n}P_{5} = 42.{}^{n}P_{3}$										
	$\frac{\frac{n!}{(n-5)!} = 42 \text{ x } \frac{n!}{(n-3)!}}{\frac{n \times (n-1) \times (n-2) \times (n-3) \times (n-4) \times (n-5)!}{(n-5)!} = 42 \text{ x } \frac{n \times (n-1) \times (n-2) \times (n-3)!}{(n-3)!}$										
	(n-3)(n-4) = 42										
	$n^2 - 7n - 30 = 0$										
	(n - 10)	(n+3)	= 0								
	n - 1	0 = 0 or	n + 3 =	0							
	m = 10	0 0 01	n - 2								
	n = 10	or	n 3								
	As n c	annot be	negative	, so $n=1$	0.						
31	Find the	e mean d	eviation	about the	mean fo	or the foll	owing data:	- 70			
	Class	Mid value	Frequency	$d_i = \frac{x_i - A}{h}$	$f_i d_i$	$ x_i - \overline{x} $	$f_i \mid x_i - \overline{x} \mid$	$\overline{x} = \mathbf{A} + \frac{\sum_{i=1}^{n} f_i d_i}{\mathbf{N}} \mathbf{h}$			
		(x _i)	(f_i)	$=\frac{x_i-35}{10}$		$= x_i - 35 $		N			
	0-10	5	4	-3	-12	30	120	$= 35 + \frac{0}{60} \times 10 = 35$			
	10-20	15	6 10	-2	-12	20	120	(6.0 cm ²)			
	30-40	35	20	0	0	0	0	1 //			
	40-50	45	10	1	10	10	100	M.D. = $\frac{1}{N}\sum_{i=1}^{N} f_i x_i - \overline{x} $			
	50-60	55	6	2	12	20	120	$N_{i=1}$			
	60-70	65	4	3	12	30	120				
			N = 60		$\Sigma f_i d_i = 0$		$\Sigma f_i x_i - \vec{x} = 680$	$= \frac{1}{60} \times 680 = 11.33.$			
						ad a	52 E				
32	Let U =	${x \in N}$	$: x \leq 8\},$	$A = \{x \in$	N:5 <	$< x^2 < 50$	},				
	$\mathbf{B} = \{\mathbf{x}\}$	∈ N : x is	s a prime	number l	ess thar	n 10}.					
			I			,					
	(vi)	Draw	a Venn I	Diagram to	o show	the relation	onship between	the given sets			
	(vii)) list the	e elemen	ts of A ^I							
	(viii) list the	e elemen	ts of B ^I							
	(ix)	list the	e elemen	ts of A – I	В						
	list the	elemente	of $\Delta \cap \mathbf{I}$	λ ^Ι	_						
	1150 me		01 / 1 1 1								
	$U = \{1, 2,\}$	2,4,2,0,/,8 ב ב ד	J								
	A = {3,4,!	5,6,7}									
	$B = \{2, 3, 5\}$	5,7}									

$$\begin{bmatrix} 0 \\ (i) \\ (ii) \\ (ii) \\ (iii) \\ (i$$

- no girl? at least one boy and one girl? at least 3 girls? (1V) (V)
- (vi)

(i) Since, the team will not include any girl, therefore, only boys are to be selected. 5 boys out of 7 boys can be selected in ${}^{7}C_{5}$ ways. Therefore, the required number of ways = ${}^{7}C_{5} = \frac{7!}{5!(7-5)!} = 21$ (ii) Since, at least one boy and one girl are to be there in every team. $^{7}C_{1} \cdot {}^{4}C_{4}$ ways. (a) 1 boy and 4 girls $^{7}C_{2} \cdot {}^{4}C_{3}$ ways. (b) 2 boys and 3 girls (c) 3 boys and 2 girls $^{7}C_{3} \cdot {}^{4}C_{2}$ ways $^{7}C_{4} \cdot {}^{4}C_{1}$ ways (d) 4 boys and 1 girl. Therefore, the required number of ways = ${}^{7}C_{1} \cdot {}^{4}C_{4} + {}^{7}C_{2} \cdot {}^{4}C_{3} + {}^{7}C_{3} \cdot {}^{4}C_{2} + {}^{7}C_{4} \cdot {}^{4}C_{1}$ = 7 + 84 + 210 + 140 = 441(iii) Since, the team has to consist of at least 3 girls, the team can consist of (a) 3 girls and 2 boys, ${}^{4}C_{3} \cdot {}^{7}C_{2}$ ways. (b) 4 girls and 1 boy. ${}^{4}C_{4} \cdot {}^{7}C_{1}$ ways Therefore, the required number of ways = ${}^{4}C_{3} \cdot {}^{7}C_{2} + {}^{4}C_{4} \cdot {}^{7}C_{1}$ = 84 + 7 = 91OR What is the number of ways of choosing 4 cards from a pack of 52 playing cards? In how many of these (vi) four cards are of the same suit four cards belong to four different suits (vii) (viii) are face cards two are red cards and two are black cards (ix) cards are of the same colour? (X) (iii) are face cards = ${}^{12}C_4$ $=\frac{12!}{4! \ 8!} = 495$ (i) four cards are of the same suit (iv) two are red cards and two are black cards $= {}^{26}C_2 \times {}^{26}C_2$ $= {}^{13}C_4 + {}^{13}C_4 + {}^{13}C_4 + {}^{13}C_4$ $=\frac{26!}{2!24!}$ $= 4 \text{ x} {}^{13}\text{C}_{4}$ (v) cards are of the same colour? (ii) four cards belong to four different suits, $= {}^{26}C_4 + {}^{26}C_4$ $= {}^{13}C_1 x {}^{13}C_1 x {}^{13}C_1 x {}^{13}C_1$ $= 2 \times \frac{26!}{4! \cdot 22!}$ $= 13^4$ The diameters of circles (in mm) drawn in a design are given below. Calculate Mean, Variance and 35 Standard Deviation for the data

	Class Closed Freq.		Mid value	$y_i = \frac{x_i - A}{h}$	f _i y _i	y_i^2	$f_i y_i^2$				
		class	(f_i)	(x_i)	$=\frac{x_i-42.5}{4}$						
	33-36	32.5-36.5	15	34.5	-2	-30	4	60			
	37-40	36.5 - 40.5	17	38.5	-1	-17	1	17			
	41-44	40.5 - 44.5	21	42.5	0	0	0	0			
	45-48	44.5-48.5	22	46.5	1	22	1	22			
	49-52	48.5-52.5	25	50.5	2	50	4	100			
	$N = 100$ $\Sigma f_i y_i = 25$							$\Sigma f_i y_i^2 = 199$			
	$Mean = A + \frac{\Sigma f_i y_i}{N} \times h$										
	$= 42.5 + \frac{25}{100} \times 4 = \left[\frac{199}{100} - \left(\frac{25}{100}\right)^2\right] 16$										
	$= 42.5 + 1 = 43.5.$ $= \left[1.99 - \frac{1}{16}\right]16 = 30.84$										
	Variance $(\sigma^2) =$										
	$= \left[\frac{\Sigma f_i y_i^2}{N} - \left(\frac{(\Sigma f_i y_i)}{N}\right)^2\right] h^2 \qquad (\sigma) = \sqrt{\operatorname{Var}(X)} = \sqrt{30.84}$										
36	(i) <u>A</u> an	d R are two s	ets such tl	hat $n(A - B)$	$-20 \pm x n(B)$	$(-\Delta) - 3x$ and	$d n(\Delta)$	$(\mathbf{O} \mathbf{B}) = \mathbf{v} + 1$			
	(I) If n($(a \ b \ arc \ two \ s) = n(B)$ the	en find 'x'		$= 20 + \lambda$, II(D	II = JX dII	u II(71	(1m) = x + 1			
	An: x = 10	i) ii(D) iiic		•				(1111)			
	(ii) Check whether the following statement is True or False with reason: A and B are two sets such that $n(A \cap \overline{B}) = 8$, $n(A) = 12$ and $n(A \cap B) = 5$. (1m) An: False, $n(A \cap \overline{B}) = n(A) - n(A \cap B)$										
	(iii) If A and B are two sets such that $n(A) = 36$ and $n(B) = 55$ and $n(A \cap B) = 30$, then find $n(A - B)$ An: $n(A - B) = n(A) - n(A \cap B) = 36 - 30 = 6$ (2m)										
	If A and B are two sets such that $n(A) = 36$ and $n(B) = 55$ and $n(A \cap B) = 30$, then find n(only B) $n(\text{only B}) = n(B - A) = n(B) - n(A \cap B) = 55 - 30 = 25$										
37	(i)	Find the real	l number f	from co-dom	ain which is a	ssociated with	h x = 0).1 is $\frac{100}{99}$			
	(ii)	Find the Pre	-image of	$\frac{-1}{2}$ in the co-	-domain. $x = \frac{1}{2}$	$\pm \sqrt{3}$					
	(iii)	Find the don	nain of the	e function f	$R - \{-1, 1\}$						
		- OR -									
		Find the ran	ge of the f	function f	R - [0, 1)						
			<u>.</u>	j	- L~, -/						

								1		
								$\frac{1}{1-x^2} = y$		
								$1 = y - yx^2$		
		1	$-x^{2}$	= 0				$yx^2 = y - 1$		
		$1 = x^2$						v - 1		
		v	$r = \sqrt{1}$	Ī				$x^2 = \frac{y - 1}{y}$		
		^	- v 1	L				$\mathbf{x} = \sqrt{\mathbf{y}^{-1}}$	1	
		x	$z = \pm 1$					" V у		
		s	So the	doma	in of f	unction	n is R - {±1}	So the Rar	nge is R – [0, 1)	
38	38 The marks of four students out of 100 in 4 tests are given below and grading scheme is also given. Read the given information carefully and answer the following.									
								Grading Sys	stem	
	Na	me	Test	Test	Test	Test	Average	Marks (x)	Grade	
		7.	1 07	2	3	4	x≥	<u>- 91</u>	A_1	
	Prai	nchi	85	93	94	89	$90 \ge 1$	$90 \ge x \ge 81$		
	Rest	hma	75	86	76	75	$80 \ge 1$	$80 \ge x \ge 71$ $70 \ge x \ge 61$		
	An	kit	92	83	44	60	$70 \ge 100$			
	Su	nil	59	81	62	73	$60 \ge 2$	$x \ge 51$		
38	(i)	To ge $(1m)$	et a gra	ade A ₁	, what	will be	the minimun	n marks Prac	chi should score	in Test 5
		Let P	Prachi	marks	in test-	5 be v				
			85 + 9	93 + 94	+ 89 +	y _0				
		then		5		- 29	1			
						y 2 4	433 - 361 04			
		Mini	mum	marks	Prachi	y ≥ should	get = 94			
	(ii)	If An	kit sco	ored 91	mark	s in his	Test 5, then	what will be	his overall grad	e. (1m)
	()	Avera	age ma	arks of	Ankit	5 111 1115	rest 5, then		ins overall grad	(1111)
	$=\frac{92+83+44+60+91}{5}$									
		$=\frac{37}{5}$	$\frac{70}{5} = 74$	4						
		So gi	rade c	of Ank	$it = B_1$					
	(iii)	To ge	et aver	age ma	arks m	ore that	n Ankit, what	will be the	minimum marks (2m	s Sunil have to
		50010							(211	-1

Let marks of Sunil in test-5 be y then $\frac{59+81+62+73+y}{5} > 74$ y > 370 - 275y > 95Minimum marks, y = 96OR -_ Reshma was not able to take Test 5 as she was ill. What will be Reshma's grade if the teacher gives her average of 4 test in the Test 5. (2m) Average marks of Reshma in 4 test $=\frac{75+86+76+75}{4}=78$ Marks in test 5 = 78Average marks in 5 test $=\frac{75+86+76+75+78}{5}=78$ Grade = B_1
